首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13157篇
  免费   1448篇
  国内免费   3692篇
化学   13871篇
晶体学   284篇
力学   151篇
综合类   124篇
数学   63篇
物理学   3804篇
  2024年   14篇
  2023年   185篇
  2022年   289篇
  2021年   428篇
  2020年   651篇
  2019年   439篇
  2018年   383篇
  2017年   547篇
  2016年   607篇
  2015年   606篇
  2014年   708篇
  2013年   1053篇
  2012年   831篇
  2011年   1015篇
  2010年   725篇
  2009年   821篇
  2008年   750篇
  2007年   926篇
  2006年   867篇
  2005年   810篇
  2004年   735篇
  2003年   708篇
  2002年   633篇
  2001年   506篇
  2000年   421篇
  1999年   318篇
  1998年   284篇
  1997年   276篇
  1996年   239篇
  1995年   261篇
  1994年   221篇
  1993年   216篇
  1992年   209篇
  1991年   148篇
  1990年   124篇
  1989年   89篇
  1988年   83篇
  1987年   38篇
  1986年   24篇
  1985年   25篇
  1984年   11篇
  1983年   5篇
  1982年   12篇
  1981年   9篇
  1980年   11篇
  1979年   7篇
  1978年   6篇
  1977年   4篇
  1973年   8篇
  1968年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Cobalt oxide (Co3O4) modified anatase titanium dioxide nanotubes (ATNTs) have been investigated for the electrochemical sensing of hydrogen peroxide (H2O2). ATNTs have been synthesized by a two-step anodization process. ATNTs were then modified with Co3O4 employing chemical bath deposition method. The structure and morphology of ATNTs and their modification with Co3O4 has been confirmed by X-ray diffraction by scanning electron microscopy. H2O2 sensing has been studied in 0.1 M PBS solution, by cyclic voltammetry and amperometry. Variation in the peak positions and current densities was observed with addition of H2O2 for Co3O4 modified ATNTs. Sensitivity and limit of detection improved with modification of ATNTs with Co3O4 with precursor concentration up to 0.8 M. However, at higher precursor concentrations sensitivity and limit of detection toward H2O2 deteriorated. Co3O4 Modified ATNTS using 0.8 M precursor concentration are comparatively more suitable for H2O2 sensing applications due to the optimum formation of Co3O4/ATNTs heterojunctions.  相似文献   
2.
Two nickel complexes, [Ni(tpen)](ClO4)2.0.5CH3COCH3 ( 1 ) and [Ni(tpbn)](ClO4)2 ( 2 ), of tetrapyridyl ligands N,N,N′,N′-tetrakis(2-pyridyl-methyl)-1,2-ethanediamine (tpen) and N,N,N′,N′-tetrakis(2-pyridyl-methyl)-1,4-butanediamine (tpbn) were prepared and their catalysis for water oxidation reaction (WOR) studied. In 0.1 M phosphate buffer solution (PBS) of pH 8.0, complex 1 is a homogeneous molecular catalyst with an overpotential of ~440 mV and a Faradaic efficiency of 89%. At pH ≥ 9.0, complex 1 degraded gradually during the catalytic process and formed NiOx composite (nickel oxide with general formula NixOyHz) active for WOR. In contrast, complex 2 deteriorated under measured conditions (pH 8.0–12.0) and formed NiOx composite active for WOR. The NiOx composite derived from 1 in 0.1 M PBS at pH 11.0 showed an activity with an overpotential of ~500 mV, a Tafel slope of ~90 mV/decade and a Faradaic efficiency of 97%. Mechanisms were proposed for water oxidation catalyzed by 1 and 2 . This work revealed that the catalytic activity of the nickel complexes was related to the flexibility of the tetrapyridyl ligands and the adaptability of the coordination sphere of the nickel(II) center.  相似文献   
3.
The three binary Tb/Er‐rich transition metal compounds Tb3Pd2 (triterbium dipalladium), Er3Pd2 (trierbium dipalladium) and Er6Co5–x (hexaerbium pentacobalt) crystallize in the space groups Pbam (Pearson symbol oP20), P4/mbm (tP10) and P63/m (hP22), respectively. Single crystals of Tb3Pd2 and Er6Co5–x suitable for X‐ray structure analysis were obtained using rare‐earth halides as a flux. Tb3Pd2 adopts its own structure type, which can be described as a superstructural derivative of the U3Si2 type, which is the type adopted by Er3Pd2. Compound Er6Co5–x belongs to the Ce6Co2–xSi3 family. All three compounds feature fused tricapped {TR6} (R = rare‐earth metal and T = transition metal) trigonal prismatic heterometallic clusters. R3Pd2 is reported to crystallize in the U3Si2 type; however, our more detailed structure analysis reveals that deviations occur with heavier R elements. Similarly, Er6Co5–x was assumed to be stoichiometric Er4Co3 = Er6Co4.5. Our studies reveal that it has a single defective transition‐metal site leading to the composition Er6Co4.72(2). LMTO (linear muffin‐tin orbital)‐based electronic structure calculations suggest the strong domination of heteroatomic bonding in all three structures.  相似文献   
4.
Abstract

In this study, the photovoltaic organic-inorganic structures were created by deposition of poly(3,4-ethylenedioxythiophene) film doped by poly(styrenesulfonate) and reduced graphene oxide on the porous silicon/silicon substrate. Formation of the hybrid structure was confirmed by means of atomic-force microscopy and Fourier transform infrared spectroscopy. The current-voltage characteristics of the obtained structures were studied. It was found the increase of electrical conductivity and photo-induced signal in organic-inorganic structures. Temporal parameters and spectral characteristics of photoresponse in the 400–1100?nm wavelength range were investigated. The widening of spectral photosensitivity in a short-wavelength range due to light absorption in various layers of the multijunction structure in comparison with single crystal silicon was revealed.  相似文献   
5.
A polystyrene-supported phosphine oxide-catalysed Beckmann rearrangement of ketoximes in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) has been developed. Good substrate compatibility, mild reaction conditions, good yields as well as the reusability of the catalyst/solvent made this procedure more environmentally benign.  相似文献   
6.
Graphene oxide is a two-dimensional carbon nanomaterial that has risen to prominence over the last decade as graphenes water-dispersible counterpart. This key feature offers tremendous potential in the formation of waterborne hybrid materials, coatings, membranes and adsorbents that make use of its diverse surface chemistry and extraordinary surface area. However, the fundamental colloidal properties of graphene oxide remain incompletely understood, with conflicting reports on how the material's amphiphilic nature and adsorption at interfaces render it surfactant-like or particle-like in nature. In the present work, recent developments in understanding the bulk and interfacial colloidal properties of graphene oxide are explored in the context of its chemistry and system thermodynamics, giving insight into the fundamental question of whether its aqueous behaviour is most accurately described as particle-like, surfactant-like or indeed something entirely different.  相似文献   
7.
Thermal gas-phase reactions of the ruthenium-oxide clusters [RuOx]+ (x=1–3) with methane and dihydrogen have been explored by using FT-ICR mass spectrometry complemented by high-level quantum chemical calculations. For methane activation, as compared to the previously studied [RuO]+/CH4 couple, the higher oxidized Ru systems give rise to completely different product distributions. [RuO2]+ brings about the generations of [Ru,O,C,H2]+/H2O, [Ru,O,C]+/H2/H2O, and [Ru,O,H2]+/CH2O, whereas [RuO3]+ exhibits a higher selectivity and efficiency in producing formaldehyde and syngas (CO+H2). Regarding the reactions with H2, as compared to CH4, both [RuO]+ and [RuO2]+ react similarly inefficiently with oxygen-atom transfer being the main reaction channel; in contrast, [RuO3]+ is inert toward dihydrogen. Theoretical analysis reveals that the reduction of the metal center drives the overall oxidation of methane, whereas the back-bonding orbital interactions between the cluster ions and dihydrogen control the H−H bond activation. Furthermore, the reactivity patterns of [RuOx]+ (x=1–3) with CH4 and H2 have been compared with the previously reported results of Group 8 analogues [OsOx]+/CH4/H2 (x=1–3) and the [FeO]+/H2 system. The electronic origins for their distinctly different reaction behaviors have been addressed.  相似文献   
8.
Novel palladium‐doped nanoparticles have been explored to serve as the first metal oxide‐derived heterogeneous catalyst for Ullmann reaction of chloroarenes under mild condition (34 °C). This heterogeneous catalyst exhibited high catalytic activity towards the Ullmann homocoupling of chloroarenes into a series of useful symmetrically biaryl products with good to excellent yields in the presence of ethanol and NaOH, thereby leading to green and economical Ullmann reaction. The produced nanoparticles were successfully characterized by various techniques including PXRD, XPS, HRTEM, SEM‐EDS, BET, TGA techniques, elemental mapping analysis and ICP‐OES. Interestingly, based on characterization and experimental data, a reasonable mechanism has been proposed. Also, the formation of aryl methyl ketone as a by‐product has been further confirmed by isotopic labelling experiments that the acetyl moiety is derived from ethanol. Moreover, the catalyst was stable and could be easily reused up to 5 times under atmospheric air without suffering significant loss in catalytic activity.  相似文献   
9.
Self‐emulsion polymerization (SEP), a green route developed by us for the polymerization of amphiphilic monomers, does not require any emulsifier or an organic solvent except that the water‐soluble initiators such as 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane]dihydrochloride (VA‐044) and potassium persulfate (KPS) are only used. We report here the polymer nanoscaffolds from a number of amphiphilic monomers, which can be used for in situ encapsulation of a variety of nanoparticles. As a demonstration of the efficacy of these nanoscaffolds, the synthesis of a biocompatible hybrid nanoparticle (nanohybrid), prepared by encapsulating Fe3O4 magnetic nanoparticle (Fe3O4 MNPs) in poly(2‐hydroxyethyl methacrylate) in water, for MRI application is presented. The nanohybrid prepared following the SEP in the form of an emulsion does not involve the use of any stabilizing agent, crosslinker, polymeric emulsifier, or surfactant. This water‐soluble, spherical, and stable nanohybrid containing Fe3O4 MNPs of average size 10 ± 2 nm has a zeta potential value of ?41.89 mV under physiological conditions. Magnetic measurement confirmed that the nanohybrid shows typical magnetic behavior having a saturation magnetization (Ms) value of 32.3 emu/g and a transverse relaxivity (r2) value of 29.97 mM?1 s?1, which signifies that it can be used as a T2 contrast agent in MRI. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   
10.
Semiconductor materials containing bismuth have attracted the attention of researchers over the past several decades, as a result of their high photocatalytic activity in various reactions and/or high efficiency in their photoelectric conversion of solar energy. This interest originated from the observations that bismuth-containing semiconductors have a sufficiently small bandgap, which makes them sensitive to radiation in the visible spectral range; thus, visible-light-active materials. Among the various bismuth-containing semiconductor materials, the bismuthates of alkaline earth metals are distinguished and describe into separate groups. This article reviews research on the known methods of obtaining bismuthates of various alkaline earth metals (magnesium, calcium, strontium, and barium), and further analyzes their composition, structure, and visible-light-active photocatalytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号